Supporting Learning and Teaching of Chemistry in the Undergraduate Classroom
Ilana A. Manneh forskningsresultat belyser hur kemiundervisningen på grundnivå kan stödjas för att göra kemin mer begriplig och meningsfull för studenter.
Ilana A. Manneh
Associate Professor Karim Hamza, Stockholms universitet Associate Professor Carl-Johan Rundgren, Stockholms universitet Associate Professor Lars Eriksson, Stockholms universitet
Professor Ingo Eilks, University of Bremen
Stockholms universitet
2019-02-22
Supporting Learning and Teaching of Chemistry in the Undergraduate Classroom
Institutionen för matematikämnets och naturvetenskapsämnenas didaktik
Supporting Learning and Teaching of Chemistry in the Undergraduate Classroom
There is agreement in research about the need to find better ways of teaching chemistry to enhance students’ understanding. This thesis aims to contribute to the understanding of how we better support teaching and learning of undergraduate chemistry to make it meaningful and intelligible for students from the outset. The thesis is concerned with examining the interactions between student, specific content and teacher in the undergraduate chemistry classroom; that is, the processes making up the three relations of the didactic triangle. The data consists of observations of students and tutors during problem-solving activities in an introductory chemistry course and interviews with graduate students.
Systematic analyses of the different interactions between the student, the chemistry content, and the tutor are made using the analytical tool of practical epistemology analysis. The main findings of the thesis include detailed insights into how undergraduate chemistry students deal with newly encountered content together with didactic models and concrete suggestions for improved teaching and for supporting continuity and progression in the undergraduate chemistry classroom. Specifically, I show how students deal with the chemistry content through a complex interaction of knowledge, experiences, and purposes on different levels invoked by both students and tutors as they interact with each other. Whether these interactions have a positive or negative effect on students’ learning depends on the nature of knowledge, experiences and purposes that were invoked. Moreover, the tutor sometimes invoked other purposes than the ones related to the task at hand for connecting the activity to the subject matter in general. These purposes were not always made continuous with the activity which resulting in confusion among students. The results from these analyses were used for producing hypotheses and models that could support continuity and progression during the activity. The suggested models aim to make the content more manageable and meaningful to students, enabling connections to other experiences and purposes, and helping teachers and tutors to analyze and reflect on their teaching. Moreover, a purpose- and activity-based progression is suggested that gives attention to purposes in chemistry education other than providing explanations of chemical phenomena. The aim of this ‘progression in action’ is to engage students in activities were they can see the meaning of chemical concepts and ideas through their use to accomplish different chemical tasks. A general conclusion is that detailed knowledge about the processes of teaching and learning is important for providing adequate support to both undergraduate students and university teachers in the chemistry classroom.
Relaterade länkar
Undervisa i engelska med digitala verktyg
Kurs för dig som undervisar i engelska med digitala verktyg.
Köp den för 749 kr.
Kursintyg ingår.